Local ensemble Kalman filtering in the presence of model bias

نویسندگان

  • SEUNG - JONG BAEK
  • BRIAN R. HUNT
  • EUGENIA KALNAY
  • EDWARD OTT
  • ISTVAN SZUNYOGH
چکیده

We modify the local ensemble Kalman filter (LEKF) to incorporate the effect of forecast model bias. The method is based on augmentation of the atmospheric state by estimates of the model bias, and we consider different ways of modeling (i.e. parameterizing) the model bias. We evaluate the effectiveness of the proposed augmented state ensemble Kalman filter through numerical experiments incorporating various model biases into the model of Lorenz and Emanuel. Our results highlight the critical role played by the selection of a good parameterization model for representing the form of the possible bias in the forecast model. In particular, we find that forecasts can be greatly improved provided that a good model parameterizing the model bias is used to augment the state in the Kalman filter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

A Local Least Squares Framework for Ensemble Filtering

Many methods using ensemble integrations of prediction models as integral parts of data assimilation have appeared in the atmospheric and oceanic literature. In general, these methods have been derived from the Kalman filter and have been known as ensemble Kalman filters. A more general class of methods including these ensemble Kalman filter methods is derived starting from the nonlinear filter...

متن کامل

Title of dissertation : ENSEMBLE KALMAN FILTER EXPERIMENTS WITH A PRIMITIVE - EQUATION GLOBAL MODEL Takemasa Miyoshi , Doctor of Philosophy , 2005

Title of dissertation: ENSEMBLE KALMAN FILTER EXPERIMENTS WITH A PRIMITIVE-EQUATION GLOBAL MODEL Takemasa Miyoshi, Doctor of Philosophy, 2005 Dissertation directed by: Professor Eugenia Kalnay Department of Meteorology The ultimate goal is to develop a path towards an operational ensemble Kalman filtering (EnKF) system. Several approaches to EnKF for atmospheric systems have been proposed but n...

متن کامل

Accounting for Model Errors in Ensemble Data Assimilation

This study addresses the issue of model errors with the ensemble Kalman filter. Observations generated from the NCEP–NCAR reanalysis fields are assimilated into a low-resolution AGCM. Without an effort to account for model errors, the performance of the local ensemble transform Kalman filter (LETKF) is seriously degraded when compared with the perfect-model scenario. Several methods to account ...

متن کامل

Distance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study

To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006